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[1] The recently derived theoretical threshold function
associated with the autoconversion process is generalized to
account for the effect of the relative dispersion of the cloud
droplet size distribution. This generalized threshold function
theoretically demonstrates that the relative dispersion,
which has been largely neglected to date, essentially
controls the cloud-to-rain transition if the liquid water
content and the droplet concentration are fixed. Comparison
of the generalized threshold function to existing ad hoc
threshold functions further reveals that the essential role of
the spectral shape of the cloud droplet size distribution in
rain initiation has been unknowingly buried in the arbitrary
use of ad hoc threshold functions in atmospheric models
such as global climate models, and that commonly used ad
hoc threshold functions are unable to fully describe the
threshold behavior of the autoconversion process that
likely occurs in ambient clouds. Citation: Liu, Y., P. H.

Daum, R. McGraw, and M. Miller (2006), Generalized threshold

function accounting for effect of relative dispersion on threshold

behavior of autoconversion process, Geophys. Res. Lett., 33,

L11804, doi:10.1029/2005GL025500.

1. Introduction

[2] The autoconversion process whereby cloud droplets
grow into embryonic raindrops is a key microphysical
process that needs to be parameterized in atmospheric
models such as cloud resolving models and global climate
models [Kessler, 1969; Manton and Cotton, 1977; Liou and
Ou, 1989; Baker, 1993; Liu and Daum, 2004]. Accurate
parameterization of the autoconversion process is especially
important for estimating the second indirect aerosol effect
[Boucher et al., 1995; Lohmann and Feichter, 1997;
Rotstayn, 2000; Rotstayn and Liu, 2005].
[3] All the autoconversion parameterizations that have

been developed so far can be generically written as

P ¼ P0T ; ð1Þ

where P is the autoconversion rate; P0 is the rate function
describing the conversion rate after the onset of the
autoconversion process, and T is the threshold function
describing the threshold behavior of the autoconversion
process. The rate function P0 has been the primary focus of
previous studies, and great progress has been made over the
last few decades [Kessler, 1969; Manton and Cotton, 1977;
Liou and Ou, 1989; Baker, 1993; Liu and Daum, 2004; Chen
and Liu, 2004; Wood, 2005]. The threshold function,

however, has received little attention, and the commonly
used threshold functions are ad hoc in nature [Kessler, 1969;
Sundqvist, 1978; Del Genio et al., 1996; Liu et al., 2006a].
[4] We have recently derived a theoretical threshold

function by truncating the collection equation at the critical
radius (LDM threshold function) [Liu et al., 2005]. Al-
though the LDM threshold function provides a firm physical
basis for the threshold behavior of the autoconversion
process, it only considers the liquid water content (L) and
the droplet concentration (N) as independent variables, and
implicitly assumes a constant relative dispersion (e, defined
as the ratio of standard deviation to the mean radius of the
cloud droplet size distribution). The assumption of a con-
stant e is a drawback of the LDM threshold function,
because the spectral shape of the droplet size distribution
is expected to vary in ambient clouds and to have a
significant effect on rain initiation [Hudson and Yum,
1997]. Furthermore, both observational and theoretical
evidence indicates that increasing aerosols concurrently
increase N and e, and the enhanced e leads to a warming
dispersion effect on climate [Liu and Daum, 2002; Rotstayn
and Liu, 2003; Peng and Lohmann, 2003; Liu et al., 2006b].
Without explicit specification of e, the LDM threshold
function is handicapped in applications such as investigat-
ing rain initiation and the second indirect aerosol effect
[Rotstayn and Liu, 2005].
[5] The primary objective of this work is to generalize the

LDM threshold function to account explicitly for e in
addition to L and N, and to use this new generalized
threshold function to examine commonly used ad hoc
threshold functions.

2. LDM Threshold Function and Its
Generalization

[6] According to Liu et al. [2005], the threshold function
can be generally described by

T ¼ P
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where r is the droplet radius, n(r) is the cloud droplet size
distributions, and rc is the critical radius. Under the
assumption that the cloud droplet size distribution is
described by

n rð Þ ¼ 3N
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; ð3Þ
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the LDM threshold function was derived to be

TLDM ¼ 1

2
x2c þ 2xc þ 2
� 

1þ xcð Þe�2xc ; ð4aÞ

where r3 is the mean-volume radius, and the critical-to-mean
mass ratio xc is a function of L and N given by [McGraw
and Liu, 2003, 2004; Liu et al., 2004, 2005]

xc ¼ 9:7� 10�17N3=2L�2: ð4bÞ

The LDM threshold function holds only for a special
Weibull size distribution that is described by equation (3)
with e = 0.36, and hence does not consider e as an
independent variable.
[7] To incorporate e, we replace equation (3) with the

general Weibull size distribution

n rð Þ ¼
qGq=3 3þq

q

� �
N

r
q
3

rq�1 exp �G
q=3

3þ q
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; ð5Þ

where G(t) =
R1
0

xt�1e�xdx is the Gamma function. The

parameter q describes the spectral shape of the cloud droplet
size distribution, and is related to e by [Liu and Daum,
2000]

e ¼ 2qG 2=qð Þ
G2 1=qð Þ

� 1

� �1=2
: ð6Þ

Theoretical and observational justification for using the
general Weibull droplet distribution are given by Liu et al.
[1995], Liu and Hallett [1997], and Liu and Daum [2000].
Substitution of equation (5) into equation (2) and sub-
sequent integration yields the generalized threshold function

Tq ¼
G 6þq

q
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xcq ¼
rc

r0

� 	q

¼ Gq=3 3þ q

q

� 	
xq=3c : ð7bÞ

where G(t, z) =
R1
z

xt�1e�xdx is the incomplete Gamma

function, and g() denotes the incomplete Gamma function
normalized by the corresponding complete Gamma function
[Press et al., 1992]. Equations (7a) and (7b) show that Tq is
determined by xc and q, and reduces to the LDM threshold
function when q = 3.
[8] Although Tq as given by a combination of equations

(6) and (7) quantifies the dependence of the threshold
behavior on e, the dependence has to be determined by
repeating the procedure of calculating Tq and e for different
values of q. This is not an ideal feature for application in
atmospheric models, which prefer simple relationships.
[9] Liu et al. [2002] showed that equation (6) is well

approximated by

q � e�1: ð8Þ

It is noteworthy that equation (8) actually gives the exact
results for e = 0, 1, and /, which corresponds to q = /, 1,
and 0, respectively. Substitution of equation (8) into
equation (7) yields

Te ¼ g
6þ e�1
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[10] The above theoretical analysis shows that the thresh-
old function is determined by two dimensionless quantities:
xc and e. Figure 1 shows Tq (solid lines) as a function of the
mean-to-critical mass ratio, i.e., the reciprocal of xc, at
different values of e. Also shown is Te (dotted lines) to
compare its performance with Tq. Two points are evident
from this figure. First, the dependence of the threshold
behavior on the mean-to-critical mass ratio (xc

�1) gradually
changes from a constant of T= 1 to a discontinuous d-function
as e decreases from/ to 0. When xc

�1 < 1, a larger e leads to a
larger value of the threshold function, and the same amount of
water converted from cloudwater to rainwater requires a
smaller xc (higher liquid water content and/or lower droplet
concentration) for a smaller e. This behavior is largely due to
the enhanced collection process resulting from a broader
droplet size distribution. These results highlight the impor-
tance of e in rain initiation, and are consistent with the
microphysical theory that droplet collision requires rela-
tive velocities resulting from droplets of different sizes
[Pruppacher and Klett, 1997]. Second, Te is an excellent
approximation of Tq for virtually all the combinations of
e and xc and can be used as a substitute for Tq in practice
(note that all the dashed Te lines but that for e = 1.76
overlap with the solid Tq lines).

3. Application of Tq to Examining Ad Hoc
Threshold Functions

[11] To obtain physical understanding of the commonly
used ad hoc threshold functions, this section examines them

Figure 1. The generalized threshold function Tq as a
function of the mean-to-critical mass ratio (xc

�1). The solid
and dotted lines represent results calculated from Tq and its
approximation Te, respectively. Note that the approximation
is so accurate that most curves of Te overlaps with those of
Tq, except those with the relative dispersion e = 1.76.
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by comparing to the theoretically derived generalized
threshold function. Traditional ad hoc threshold functions
can be generally classified as Kessler-type, Berry-type or
Sundqvist-type according to theirmathematical form.Briefly,
the Kessler-type threshold function is a Heaviside step
function [Manton and Cotton, 1977; Liou and Ou, 1989;
Baker, 1993; Liu and Daum, 2004]

TK ¼ H rm � rcð Þ; ð10Þ

where rm and rc denotes the driving and critical radii,
respectively. The other extreme is often associated with
empirical autoconversion parameterizations obtained by
fitting simulations from detailed microphysical models,
which generally have no threshold functions, or implicitly
assume a constant threshold function [Berry, 1968; Beheng,
1994; Khairoutdinov and Kogan, 2000], i.e.,

TB ¼ 1: ð11Þ

According to the discussion in Section 2, the Kessler-type
and Berry-type threshold functions in fact only represent
monodisperse and extremely broad cloud droplet size
distributions, respectively. Furthermore, because the two
extreme spectral shapes are unlikely to occur in ambient
clouds [Liu and Daum, 2000], neither the Kessler-type nor
the Berry-type threshold functions are generally applicable.
[12] The Sundqvist-type threshold function lies between

the two extremes [Sundqvist, 1978; Del Genio et al., 1996].
However, traditional Sundqvist-type parameterizations ac-
count only for L, and are therefore unsuitable for studies of
the second indirect aerosol effect. Liu et al. [2006a] has
recently proposed a generalized Sundqvist-type threshold
function

TS ¼ 1� exp �x�m
c

� �
; ð12Þ

where m � 0 is an empirical exponent. The generalized
Sundqvist-type threshold function not only exhibits a
smooth threshold behavior, but also encompasses virtually
all the ad hoc threshold functions: it reduces to the
traditional Sundqvist-type threshold functions proposed by
Sundqvist and Del Genio when m = 2 and 4, respectively,
approximately becomes the Berry-type (T = 0.63 not 1)
when m = 0, and approaches the Kessler-type when m
approaches / (see Liu et al. [2006a] for detailed
discussion). Evidently, Ts is an improvement over the
traditional ad hoc threshold functions that only work for
some special spectral shapes of the droplet size distribution.
Nevertheless, there is no physical basis for Ts, and
especially, the physical meaning of m is elusive.
[13] Careful comparison of Ts to Tq further indicates that

Ts approximately describes the overall threshold behavior of
Tq, if m is a decreasing function of e [A trial-and-error
analysis suggests that m = e�1 is not a bad approximation].
Unfortunately, Despite the improvement over the Kessler-
type and Berry-type threshold functions, Ts can accurately
describe the threshold behavior only for narrow droplet size
distributions, and is not suitable for broad droplet size
distributions in ambient clouds.
[14] Furthermore, because e likely varies from 0.1 to 10

in ambient clouds [Liu and Daum, 2000; Wood, 2000;

McFarquhar and Heymsfield, 2001], the above analyses
suggest that all the commonly used ad hoc threshold
functions cannot adequately describe the real threshold
behavior of the autoconversion process that occurs in
nature.

4. Concluding Remarks

[15] The theoretical threshold function associated with
the autoconversion process presented by Liu et al. [2005] is
generalized to account explicitly for the effect of the relative
dispersion of the cloud droplet size distribution. The gen-
eralized threshold function theoretically shows that the
relative dispersion, which has been largely neglected to
date, essentially controls the initial transition from cloud-
water to rainwater for fixed liquid water contents and the
droplet concentrations. Comparison of the generalized
threshold function with existing ad hoc threshold functions
shows that the threshold behavior of the autoconversion
process changes from the Berry-type to the Sundqvist-type
to the Kessler-type as the relative dispersion decreases, and
that the empirical parameter m in the generalized Sundqvist-
type threshold function is a decreasing function of the
relative dispersion, providing physical explanations for
these strikingly different ad hoc threshold functions. The
comparison also suggests that commonly used ad hoc
threshold functions only well describe the threshold behav-
ior for some special spectral shapes of the cloud droplet size
distribution, and cannot fully describe the threshold behav-
ior that likely occurs in ambient clouds. These results
indicate that the important role of e in rain initiation has
been unknowingly buried in the traditional practice of
arbitrarily choosing ad hoc threshold functions.
[16] It is noted that although the importance of the

spectral shape of the cloud droplet size distribution in rain
initiation has been long recognized, the spectral shape effect
has been poorly understood and quantified in atmospheric
models. A recent study has demonstrated that modeling
results are very sensitive to the treatment of the threshold
function [Rotstayn and Liu, 2005]. It will be interesting to
examine the effect of the relative dispersion on modeling
results using this generalized threshold function. The ex-
plicit consideration of the relative dispersion in the gener-
alized threshold function also allows for evaluation of the
effect of the relative dispersion caused by anthropogenic
aerosols on rain initiation, and the second indirect aerosol
effect. Furthermore, the high sensitivity of the threshold
behavior to the relative dispersion reinforces the need to
account explicitly for the relative dispersion in the param-
eterization of the autoconversion process, which is still in its
infancy [Liu and Daum, 2000; Liu et al., 2006b].
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